Turbine Oil Analysis

WearCheck's Turbine Oil Analysis kits have been designed to measure the core functions of the oil and give you the ability to monitor the operating condition of the oil and hence conduct scheduled proactive maintenance procedures.

In today's world companies rely on turbines and compressors to provide power and gas transportation for core processes. Turbines and compressors already have demanding lubrication requirements and those demands are increasing. More demands are being put on these fluids as reservoir size and working clearances decrease and system power outputs, pressures, temperatures and oil service life increase. Lubricants must be highly oxidative and thermally stable to be able to handle operating temperatures. Additionally the lubricant must remain contaminant free to properly lubricate bearings and gears, and to act as a favourable hydraulic medium for governors and valving control systems.

Oil oxidation and sludge will lead to sticking servo valves, meaning control valves will not open on demand. Oil contamination will accelerate wear, cause governors and valves to operate erratically and plug system filters. Unmonitored, poor oil condition leads to unplanned outages which are extremely expensive.

In order to achieve peace of mind on the operating condition of your turbine and compressor you need the comprehensive testing that WearCheck provides. Specifically designed for industrial turbines and compressors, WearCheck's Turbine Oil Analysis kit combines well established industrial tests with more recent advances in industry testing to provide an unparalleled view of the operating condition of your critical lubricants.

WearCheck's Turbine Oil Analysis kit determines the levels of remaining antioxidants in the oil, detects unwanted oil contamination and will accurately determine the suitability of the lubricant for continued use. A comprehensive diagnosis will warn you of any potential for damaging varnish build up and include recommendations for any necessary maintenance actions to remove contamination and restore the lubricant to optimum operating condition.

Head Office

9 Le Mans Place, Westmead, KZN, 3610 PO Box 15108, Westmead, KZN, 3608 South Africa

- t +27 (0) 31 700 5460
- f +27 (0) 31 700 5471
- e support@wearcheck.co.za

Branches

Johannesburg +27 (0) 11 392 6322 Cape Town +27 (0) 21 981 8810 Port Elizabeth +27 (0) 41 360 1535 East London +27 (0) 82 290 6684 Rustenburg +27 (0) 14 596 5706

Middelburg Zambia UAE India

+27 (0) 13 246 2966 Steelpoort +27 (0) 13 230 9929 +260 (0) 977 622287 +971 (0) 55 221 6671 +91 (0) 44 4557 5039

SABS | ISO 9001 | ISO 14001 Ouality Form w175 | Revision Date: August 2011

The leaders in Oil & Fuel Analysis

www.wearcheck.co.za

Turbine Oil Analysis Tests

(Test	Method	Benefit	Standard Ad	dvanced
	Viscosity at 40°C		Indication of the	Kit	Kit
•	VISCOSITY at 40 C	ASTM D7279	Indication of the	4	4
			flow at 40°C		
Ŀ,					
•	Viscosity at 100°C	ASTM D7279	Indication of the	4	4
			lubricants resistant to		
			flow at 100°C		
	Elemental Analysis		Concentrations of	4	4
	Elemental Analysis	ASTIMIDSTOS	various elements		
			present in the lubricant		
			A 87 3 8 4		
•	Water content	ASTM D6304	Presence of moisture in	1 ⁴	4
			parts per million (ppm)		
				4	4
•	lotal Acid Number	ASTM D974	Acidity of the lubrican	4	4
	Particle Quantification		Indication of magnetic	4	4
			particles in the lubricant	t – 1	
				Sec. 1	
٠	Particle Count	ISO4406:99	Size and distribution of	F 4	4
			particles		
5	Pempining Useful Life	ASTNA D6071*	Concentration of	4	4
3	Kemaining Oserut Lite	ASTM D07/1	antioxidants present as		÷.,
			compared to new oil		
5	1/69.5		20		
•	Varnish Potential Rating		Presence of insolubles	4	4
j,			that may lead to varnish	ו	
			build up		
	Foaming Characteristics	ASTM D892	Tendency of the		
	rouning endracteristics	7.511112072	lubricant to produce		4
7			foam and the stability		
			of the foam produced		
	41.0				
•	Air Release	ASTM 3427	Ability of the lubricant		4
			to release entrained dif		
•	Water Separability	ASTM D1401	The lubricant's ability to)	4
			separate from water		
•	Rotating Pressure Vessel	ASTM D2272	Oxidative stability	Available on	request
	CARGETON TEST		of the lubricant		

SABS | ISO 9001 | ISO 14001 Quality Form w175 | Revision Date: August 2011

* Variances to the method are applied

The leaders in Oil & Fuel Analysis

www.wearcheck.co.za